Distributed Fiber Optic Sensing

Noise in Fiber-Optic Sensors

Fiber optic interferometric sensors

Optical fiber interferometry: From submarine sensors to quantum clocks?

Optical fiber microresonators: fundamentals and applications in ultrasensitive gas detection

Whispering gallery modes (WGMs) in dielectric microresonators with circular symmetry have become the focus of many theoretical and experimental studies due to their exceptional properties such as extremely small mode volumes, very high power density and narrow spectral linewidths. WGMs have found many applications ranging from unique tools to study nonlinear optical phenomena and quantum electrodynamics, to low threshold microlasers as well as very sensitive microsensors. Among the variety of optical microresonators shapes, materials and technologies, optical fiber micro resonators offer additional advantages of simpler and less expensive fabrication.

This tutorial will introduce the fundamentals of fiber microresonators, review their fabrication methods, optical coupling techniques and applications for ultrasensitive detection of gases, volatile organic components (VOCs), liquid analytes and other physical parameters. Specific focus will be on the sensors based on polymer-coated microfiber resonators that rely on measurements of refractive index changes due to absorption of gas molecules by the coatings. Several specific examples of the microresonator based gas/VOC sensors and sensors will be presented including analysis and comparison of their performance. Microresonators for sensing of other parameters will also be briefly discussed. In conclusion, most recent developments, future prospects and challenges for the gas/VOC sensors will be discussed including the need for simultaneous detection of multiple gases/VOCs and overcoming the drawbacks of fabrication and readout complexity.

Sensing using Light: a comprehensive vision of a key Photonics area

Light Science and Technologies (Photonics) now touches almost every area of our lives. It is considered a Key Enabling Technology (KET) or an Essential Technology for the development of Europe, USA and others main nations around the world. Photonic Sensing is understood as any sensing approach that employs light technologies and it is becoming an area with very important expectations of annual growths and strong socio-economic impacts in the present decade of this XXI century.

In this tutorial, will be offered a Doctrinal Conception of Sensing using Light (SuL) as an “umbrella” in what any sensing approach using Light Sciences and Technologies can be easily included. The key requirements of a sensing system will be, easily, introduced up to reach the general conception of a sensor using light techniques and related issues such as its main constituted parts and types. The case in which smartness is conferred to the device it is also consider. To illustrate this general concept, a quick “flight” over significant cases using different principles, techniques, technologies to detect diverse measurands in different sector applications such as Civil Engineering, Industrial Processes, Energy, environmental Health and Medicine, among others will be offered. Finally, some words concerning expected market and challenges to face in the near future will be also addressed. After this tutorial, any sensing approach using Light Sciences and Technologies will be easily and properly included in the umbrella of this key area both of sensors and of photonics: Sensing using Light or Photonic Sensors.

Biomedical Applications of Optical Fibers & Fiber Sensors

Given their EM immunity, intrinsic safety, small size & weight, autoclave compatibility and capability to perform multi-point and multi-parameter sensing remotely, optical fibers and fiberoptic-based sensors are seeing increased acceptance and new uses for a variety of bio-medical applications—from laser delivery systems, to disposable blood gas sensors, to intra-aortic pressure probes, to digital X-rays to name a few.  This tutorial will provide a broad overview on how optical fibers and fiber-based sensors are being utilized in the biomedical arena, highlighting their intrinsic characteristics, advantages and requirements.  Key industry applications, challenges and trends will be discussed, along with their future prospect and overall commercial outlook.

Sensing Outside the Cladding Boundary with Fiber Opto-Mechanics

Stay Current

OFS 2022 Email List

Get OFS 2022 news and resources sent straight to your inbox.

  • 00Days Until the Conference


Contact Us

IEEE websites place cookies on your device to give you the best user experience. By using our websites, you agree to the placement of these cookies. To learn more, read our Privacy Policy.